Mapping Objects
To Reational Databases

Scott W. Ambler

President, Ronin International

QRONIN

Portions of thiswhite paper have been modified from Scott W. Ambler’s books,
including
Building Object Applications That Work
Process Patterns
And

The Object Primer 2" Edition

http://mww.AmbySoft.com/mappingODbj ects.pdf

ThisVersion: July 3, 2000

Copyright 1998-2000 Scott W. Ambler

Copyright 1998-2000 Scott W. Ambler ii

ChangeHistory

March/April 1998:
The following additions have been made to this document:
A discussion of determining the value of object identifiers (OIDs) in adistributed environment
A discussion of determining the value of OIDsin amulti-vendor database environment
A discussion of replicating objects across persistence mechanisms
An example showing the various ways to map inheritance.
A discussion of the process patterns applicable to mapping objects to relational databases
A discussion of theissuesinvolved with performing aninitial dataload

Special thanksto Chris Roffler and Ben Bovee for pointing out needed improvements.

May 16", 1998:
| removed portions of the original document and moved them into my new persistence layer design white
paper, downloadable from http: //www.ambysoft.com/per sistenceL ayer.html .

June 1%, 1998:
Minor updates to diagrams and pagination improvements

November, 1998:
Fixesto inheritance section.
Career advice for data model ers added.
Process patterns for OO modeling added.
Minor spelling and grammar updates.

February, 1999
Updates to mistakesin diagrams
Improved discussion of why using data models as the basis for your OO model isn't advisable

July 2000
Updated with material from The Object Primer 2™ Edition
Changed to reflect the fact that Ambysoft has partnered with Ronin International (www.ronin-intl.cor)
Inserted the "blatant advertising” which | realizeis alittle annoying but the reality isthat you get a
really solid white paper at the cost of having to endure advertising for some great books and areally
good software consulting company.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler iii

Table Of Contents

1. THE OBJECT-RELATIONAL MISMATCH. ... 1

2. THEIMPORTANCE OF OBJECT IDS.......coo i ssssnes 1

21 OIDSSHOULD HAVE NO BUSINESS M EANING.....ccctuieeeieemieemsiesssssessrsesessssessesssssssssessesssssssssssssssssssssenas
22 OID UNIQUENESS......cceuieemmieeesteeestrsessssesessese s ssssssssssessssssssstsesstssssssssssssssssessessssssssssssssssesssssssssssssssssssessssesas
23 STRATEGIES FOR ASSIGNING OIDS......coiiiireiirreeineeineseeseiesstie s sess s sessessssssssssssssssessssesas
2.3.1 Using MAX() on an Integer Column........cc.cccreeeueene
2.3.2 Maintaining a Key-Values Table........c.cccoveenivrniene
2.3.3 GUIDFUUIDS.......cccontemmieemniremireeerseerseessesesseassseesensenes
2.3.4 Proprietary Persistence Mechanism Features
235 The HIGH/LOW APProach TO OIDS.......cccuieirecirieneieensisesisesisese s ssessssesssssssessssesssssssssssssssenns
2351 Implementing @ HIGH/LOW OIDcoooiiiiiiirireeeennie e nnenes 5
2352 HIGH/LOW OIDsIn aDistributed ENVIrONMENTcccoimiieiiirneeesneeseresreeese s
2353 HIGH/LOW OIDsIn A Multi-Vendor Environment
24 REPLICATION OF OBJIECTS...cucucuieeeieeestieessssesessese s ssessssessssessssssssssssssssssssssssssssesssssssessssessssssssssssssessssssenns

3. THE BASICS OF MAPPING.......oiierrre i s s s 7

31 MAPPING ATTRIBUTES TO COLUMNS.....cuiuttrieerieemnersenessesessessssesessesessss st ssss s sssse s sssssssesssssssesssnsssens
32 MAPPING CLASSES TO TABLES.....cotueitteetrreserseee s sessssesssses st sssss s ssss s esss s ssesssssssssssnsssens
3.2.1 Implementing Inheritance in a Relational Database...........cccouverreerreerneeeneenneneneeeseeeseeesseens
3.2.2 Mapping Several Classes To One Table
33 MAPPING RELATIONSHIPS.......contemeemtrnesrneserseee e ssessssessesesseseens
3.3.1 The Difference Between Association and Aggregation
3.3.2 Implementing Relationshipsin Relational Databases...........ccoueeerncrneeneenesessesseeeneenns
3.3.3 Implementing Many-To-Many RelationShiPS.........ccooercieiemeese s sessessssessssesenns
3.3.4 The Same Classes/Tables, Different Relationships.........cocenennneeeeeneesesseseeeneenne

4. CONCURRENCY, OBJECTS, AND ROW LOCKING......c.coiririierresretreseee e 16

41 PESSIMISTIC VS OPTIMISTIC LOCKINGcocutuiueieteieieteteieieteteseiete s bbb s bbb sessbesesssebesesesesesesssssesenas 16
5. STORED PROCEDURES ... s 16

6. TRIGGERS........o e 17

7. PROCESSPATTERNSFOR MAPPING OBJECTSTO RDBS..........ccooeicrrrn s 18

71
72 THE IMPLICATIONS?.....ciitiitieie ettt 23

8. THE REALITIESOF MAPPING OBJECTSTO RELATIONAL DATABASES ... 24
81 OBJECTSAND RELATIONAL DATABASES ARE THE NORMcooviieiirerirerereresesesesesesesesesesesesesssesesesssenenes

82 ODBC AND JDBC CLASSESAREN'T ENOUGH ... oooieierireeerererineseresesesesesesesesesesssesesesssssesesssssesesssssessssssnenes
83 THEREFORE YOU NEED A PERSISTENCE LAYER...........

84 HARD-CODED SQL ISAN INCREDIBLY BAD IDEA

85 YOU HAVE TO MAP TO LEGACY DATA ... oottt

86 ...BUT THE DATA MODEL DOESN’T DRIVE YOUR CLASS DIAGRAMooovriieririririreresesesesesesesesesesenenes
87 JOINS ARE SLOW ...ocuieiieeseretesesesesese sttt sttt ettt ettt
88 KEYSWITH BUSINESSMEANING ARE A BAD IDEA... ..o
89 .. AND SO ARE COMPOSITE KEY Si...oiiiiitiieirieteisisesisisises s issseses s sesessss et ss st sssssssssssssssssssssssssssessssssnenes
810 YOU NEED SEVERAL INHERITANCE STRATEGIES,

811 STORED PROCEDURESARE A BAD IDEA ..ottt

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler iv

9. SOWHAT'SWITH THE ATTITUDE PROBLEM? ... 28
10, SUMMARY e bbb s 28
11. REFERENCESAND RECOMMENDED READING..........cccoumminiiii s sssesans 29
12. ABOUT THE AUTHOR.......ot s bbb b 30
13, GLOSSARY OF TERMS ... bbb b 31
14. INDEX o s 35

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

This paper presents a practical look at the issuesinvolved with mapping objects*to You must

relational databases and should alleviate several common misconceptions prevalent consciously choose
in development circlestoday. Before you read any further, this paper is assumes to build a quality
that you want to devel op object-oriented applications that are easy to extend andto application, and that
maintain, that you are willing to invest the time during development to determine a takestimeand an
persistence strategy that will achieve these aims. If your goal isto simply bangout understanding of the
asmall application as quickly as you can, ignoring quality, then stop reading right basics. Thispaper

now and just start hacking out some code. If your goal isto build something that presentsthe basics
will add long-term value to your organization, to build a quality object-oriented of mapping objectsto
application, then read on. Y ou have to make a conscious decision to do things relational databases.

right, and thefirst step isto take the time to understand what the right and wrong
thingsare. This paper discusses many of the principlesinvolved for successfully
mapping objectsto relational databases.

The material in this paper should be taken as a collection of strategies that you should follow whenever
possible, and if you go against them then you should have avalid reason for doing so and know the
implications of doing so. The strategies are based on my devel opment experiences from small projects of
several peopleto large projects of several hundred people, on projectsin the financial, distribution, military,
telecommunications, and outsourcing industries. 1’ve applied these principles for applications written in
C++, Smalltalk, Visual Basic, and Java. The bottom lineisthat the material in thiswhite paper is based on
real-world experiences on awide variety of projects. | hope that you find this paper of use.

1. The Object-Relational Mismatch

The object paradigmis based on building applications out of objects that have both data and behavior,
whereas the relational paradigmis based on storing data. The “impedance mismatch” comesinto play when
you look at the preferred approach to access. With the object paradigm you traverse objects viatheir
relationships whereas with the relational paradigm you duplicate datato join therowsin tables. This
fundamental difference resultsin anon-ideal combination of the two paradigms, although when have you
ever used two different things together without afew hitches? One of the secrets of success for mapping
objectsto relational databasesisto understand both paradigms, and their differences, and then make
intelligent tradeoffs based on that knowledge.

2. The Importance of Object IDs

We need to assign unique identifiers to our objects so that we can identify them. In Object identifiers
relationa terminology auniqueidentifier is called akey, in object terminology itis (OIDs) areused to
called an object identifier (OID) although perhaps persistent object identifier would uniquely identify
be abetter term. OlDs are typically implemented as full-fledged objectsin your OO objectsina
applications and as large integers, or severa large integersfor larger applications, in relational database.
your

relational schema. Figure 1 presents a diagram showing a possible implementation of an OID class and
Figure 2 shows how an OID might be mapped to a column(s) in atable.

OlIDsallow usto simplify our key strategy within arelational database. Although OlIDsdon’t completely
solve our navigation issue between objects they do makeit easier. You still need to perform tablejoins,

! This white paper does not discuss the design of a persistence mechanism in detail, the topic
http://www.ambysoft.com/persistencel ayer.html

Copyright 1998-2000 Scott W. Ambler 2

assuming you don’t intend to traverse, to read in an aggregate of objects, such asaninvoice and all of its
lineitems, but at least it's doable.

Another advantage is that the use of OlDs also putsyou into apositionin whichit isfairly easy to
automate the maintenance of relationships between objects. When all of your tables are keyed on the same
type of column(s), in this case OIDs, it becomes very easy to write generic code to take advantage of this
fact.

21 OIDs Should Have No Business Meaning

A very critical issue that needsto be pointed out is that Ol Ds should have absol utely no business meaning
whatsoever. Nada. Zip. Zilch. Zero. Any column with a business meaning can potentially change, and if
there' s one thing that we learned over the yearsin the relational world it’sthat it's afatal mistaketo give
your keys meaning. If your users decide to change the business meaning, perhaps they want to add some
digits or make the number al phanumeric, you need to make changes to your database in every single spot
where you use that information. Anything that is used as a primary key in onetableisvirtually guaranteed
to be used in other tables as aforeign key. What should be a simple change, adding adigit to your
customer number, can be a huge maintenance nightmare. Yuck. Intherelational database world, this OID
strategy isreferred to as employing surrogate keys.

To give you an example, consider telephone numbers. Because phone numbers are unique many companies
use them as keysfor their customers. Although this sounds like a good idea, you' re actually asking for
trouble. | live near Toronto, Canada and because of the increased use of cellular phones, modems, and fax
machines the local phone company was recently forced to divide the phone numbers of the 416 area code
between 416 and 905. What’ s lesswork, changing the phone numbersin afew tables that had them as non
key columns, or changing lots of tables that used them as either primary or foreign keys— not to mention the
changes needed to your indexes? Moral of the story — Ol Ds should have no business meaning.

2.2 OID Unigueness

When assigning object IDs (OIDs) there are two main issues that you need to An OID should be
address: Thelevel of uniqueness of the OID and how to calculateit. The uniguewithin a class
importance of the first issue, uniqueness, isn’t always obvious to developerswho hierarchy, and ideally
are new to object orientation. There are three levels of uniquenessthat youneed uniqueamongall

to consider: unigqueness within the class, uniqueness within the class hierarchy, objects.

and uniqueness across all classes.

For example, will the OID for a customer object be unique only for instances of customer, to peoplein
general, or to all objects. Given the OID value 74656 will it be assigned to a customer object, an employee
object, and an order object, will it be assigned to a customer but not an employee (because Customer and
Employee are in the same class hierarchy), or will it only be assigned to a customer object and that’sit. The
real issueisone of polymorphism It is probable that a customer object may one day become an employee
object, but likely not an order object. To avoid thisissue of reassigning Ol Ds when an object changes type,
you at least want uniqueness at the class hierarchy level, although uniqueness across all classes completely
avoidsthisissue.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 3

2.3 Strategies for Assignhing OIDs

The second issue, that of determining new OIDs, can greatly affect the runtime efficiency of your
application.

2.3.1 UsngMAX() on an Integer Column

In the past (Ambler, 1996) | suggested that one approach to assigning Ol Dswas to use the SQL MAX()
function on an integer column being used as a primary key. The basic ideaisthat when you insert anew
row into the table that you take the MAX() of that column, add oneto it, and then use that as the value for
your key. The problemswith this approach isthat you do amomentary table lock, although many
databases are optimized for this approach, and that you don’t have unique values for OlDs across all your
objects, only for those stored within each table.

2.3.2 Maintaining aKey-ValuesTable

There are two flavors of this approach, the first where you maintain asingle row with a single integer column
in which a counter value is stored. When you insert into any table you first lock and increment this value
and useit asthe OID value. The advantage of this approach isthat you avoid locking the other tables when
you invoke MAX() and that you have a unique value across all objects. The disadvantages are that this
table becomes a bottleneck (although you can cache this value in memory if needed). and that you quickly
run through OID val ues.

The second flavor isto use a multi-row table where you have one row per tablein your system, where each
row has two columns, the first column is an identifier for the table name and the second is the integer value
of the next key value for that table. Once again you avoid table locking with this approach but now have a
greater range of OID values because each table now hasit’s own counter. Now you're back to losing
uniqueness of OID values between objects and this table still potentially becomes a bottleneck (although
you can cache these values in memory if needed).

2.3.3 GUIDSUUIDs

Several years ago Digital came up with astrategy called UUIDs for determining generating unique key
values based on hashing the value of the identification number of the Ethernet card within your computer
and the current date and time, producing a 128-bit string that was guaranteed unique. For computers
without Ethernet cards you could obtain aidentification number stored onlinein afile. Microsoft hasa
similar strategy called GUIDsthat also resultsin a 128-hit string.

Both of these strategies work well, although both strategies are proprietary and do not run on all platforms.
Thereisalso the philosophical issueto deal with, although | don’t think it’s abig deal, of not having your
persi stence mechanism(s) assign OID values for you.

2.3.4 Proprietary Persistence M echanism Features

Some databases, for example Oracle, have built in features for generating unique values that can be used for
OID values. Although these approaches work well, they are by definition proprietary and therefore out of
your control. If you ever have to port to a new persistence mechanism, an event that is far more common
and likely than your database/persistence community iswilling to admit, then this can become a serious
issue for you.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 4

Scott’s General Design Philosophy: Proprietary Approaches Will Always Burn You

| can’t be more emphatic about this: you really need to think before accepting a proprietary technology
within your environment. Y es, there are aways performance reasons, and often ease-of-development
reasons, but never forget that you also need to worry about “itty-bitty” issues such as portability,
reliability, scalability, enhancability, and maintainability. |’ve seen alot of organizations get themselvesinto
serious trouble by using proprietary features that lock them into technol ogies that later prove to be
insufficient for their futures needs. Later in thispaper I’ll discuss the evils of using stored procedures,
amazingly enough still proprietary technology after all of these years.

2.3.5 TheHIGH/LOW Approach To OIDs

Thebasic ideaisthat instead of using alargeinteger for the OID, requiring you to go to a single source (and
therefore a bottleneck) to obtain the OID, you reorganize your OID into two logical components: A HIGH
value that you obtain from a single source and aLOW value that the application assignsitself. Thevaue
HIGH is obtained from a single row table in the database (or from abuilt in key value function for some
databases) when the application first needs to create an OID. Because HIGH is obtained from asingle
sourceit is guaranteed to be unique. At this point the value for LOW is set at zero and isincremented every
time an OID is needed for that user’s session. For example, if the application that you' re running requests a
valuefor HIGH it will be assigned the value 1701 for HIGH, and all Ol Ds that the application assignsto
objectswill be combination of 1701 & 1, 1701 & 2, and so on. If my application requests avaue for HIGH
immediately after you it will given the value of 1702, and the OIDs that will be assigned to objects that |
crestewill be 1702 &1, 1702 & 2, and so on.

The advantage of this approach isthat the single row tableis no longer as big of a bottle neck, thereisvery
little network traffic needed to get the value for an OID (one database hit per session), and OIDs can be
assigned uniquely across all classes. In other words, this approach is as simple and efficient asyou’ re ever
going to getit. Yes, becauseit’s possible that your value of LOW could be incremented to the maximum
value that your design callsfor, for example if LOW isfour digits then the maximum value is 9999, therefore
at thispoint you' ll need to fetch anew value of HIGH and reset the value of LOW.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 5

2.3.5.1 Implementing a HIGH/LOW OID

Figure 1 presents one way to implement an OID class. The basicideaisthat when a Takean OO

new persistent object is created it isassigned an OID which is created by the single approach to Ol Ds
instance of Object Factory. The sole responsibility of Object Factory isto createnew and encapsulate
OID objects. It doesthis by keeping track of the next HIGH and LOW values, having their behavior ina
to fetch aHIGH value from the persistence mechanism (database) occasionally to do class.

so. It creates an instance of OID based on the next values and returnsit to be used as

the unique OID for the new persistent object. The asColumns method returns a

collection of dataitems that can be saved to arelational database to represent the

instance of OID.

Persistent Ohject Ohject Factory OID
abstract uses 3| nextHigh creates high
oid 0.* 1| nextL.ow 1 0..* low
wewOID asColumns
T fetchHigh¥V alue
Person

Figurel. A classdiagram showing a possible way to implement a HIGH/LOW OID.

Figure 2 shows three of the possible strategies for how a HIGH/LOW OID might be implemented in your
relational database. Neither strategy isideal, each hasits advantages and disadvantages, the important
thing isthat you choose one strategy and use it consistently for all tables, making your persistence layer
(Ambler, 1998c) that much easier to develop. Thefirst strategy uses a single integer number for the key,
simplifying your key strategy but putting afairly small upper limit on the value of your OIDs (the largest
integer number your database handles). The second strategy alleviates the size problem, you store the OID
asastring of an arbitrary size that you choose, but increases the overhead of your key by using alarge
string (many databases are optimized to use single large integers as the primary keys but are slower for
strings). Thethird strategy uses acomposite key for your OID, the disadvantages of composite keys are
discussed later in this paper, potentially reducing the storage overhead of your keys (as compared to the
second strategy).

Person Person Person
personOID: integer | | personOID: char(50) | | personOID1: integer
personID2: integer
personOID3: integer

Figure2. MappingaHIGH/LOW OID to ardational table.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 6

A fourth strategy, a combination of the second and third, involves hashing the OID object to astring. The
basic ideaisthat you convert the OID into a collection of 8-bit numbers and then build a string from the
numbers by first converting each number to a character and then concatenating the characters. For example,
if your OID isbuilt from a 32-bit HIGH number and an 8-bit LOW value then you would save them out asa 5-
character string, thefirst four characters representing the high number (32/8 = 4) and the fifth representing
the LOW value.

Scott’s Preferred Approach

| typically use a96-bit high number (often the combination of three 32-bit integers) for HIGH and a 32-bit
integer for low. | then convert it to a 128-bit string taking the performance hit on using it asakey. Themain
disadvantage of thisisthat some databases have not yet been optimized for keys of fixed-length strings
(instead they are optimized for Integers). Thiswill changein time as devel opers demand support for more
sophisticated approach to keys.

2.35.2HIGH/LOW OIDs I n a Distributed Environment

As mentioned previously, OlDs must be unique. But how do you guarantee uniquenessin adistributed
environment where a client may obtain the HIGH valuefor its OID from anumber of servers? The answer is
simple: the server machines must also have a strategy for obtaining unique HIGH values between
themselves. There are several strategiesto doing so. First, the servers could use their own internal
HIGH/LOW approach, obtaining a HIGH value from asingle source. Second, the servers could obtain a
block of HIGH values from a centralized source, obtaining a new block when they run out.

2.35.3HIGH/LOW OIDsIn A Multi-Vendor Environment

A related issue occurs when your organi zation uses persistence mechanisms produced by several vendors,
acommon occurrence in large organizations. Although several database vendors have strategies for
producing surrogate keys, even in distribute environments, these strategies are typically applicable only for
the products that they sell. Theissue boilsdown to this: if the proprietary key value approach of Vendor A
produces aHIGH value of 1701, and the proprietary key value approach of Vendor B a so produces aHIGH
value of 1701, then you' re completely screwed. Theimplication isthat you will need to roll your own
strategy in such an environment, likely one of the strategies mentioned in the previous section.

2.4 Replication of Objects

Replication isthe issue of ensuring the information is kept up-to-date and synchronized when it is being
stored and potentially updated at several physical locations. A primary consideration with the replication of
datais the manner in which they are identified, and by having OlIDs that are unique across al persistence
mechanisms, regardless of vendor, ensures that you are able to determine uniquely identify an object no
matter where and when it was created. There are significantly more issuesinvolved with replication than
just uniquely identifying objects, the point to be made isthat OlIDs are an enabler of replication.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 7

3. The Basics of Mapping

Inthissection | will describe some of the basic issues of mapping (Ambler, 1998a; Ambler, 2000) objectsinto
relational databases. Theseissues are:
Mapping attributes to columns
Mapping classes to tables
Implementing inheritance in an RDB
Mapping several classesto asingletable
Mapping relationships
- One-to-one
One-to-many
Many-to-many
Association vs. aggregation
Same classes/tables, different relationships

Blatant Advertising — Purchase Building Object Applications That Work today!
feag Building Object Applications That Work is an intermediate-level book about
Building Object object-oriented development. It covers awide range of topicsthat few other
Applications that Waork books dare to consider, including: architecting your applications so that

they’ re maintainable and extensible; OO analysis and design techniques; how
to design software for stand-alone, client/server, and distributed
environments; how to use both relational and object-oriented (OO) databases
to make your objects persistent; OO metrics, analysis and design patterns; OO
testing; OO user interface design; and a multitude of coding techniquesto
make your code robust. Visit
www.ambysoft.com/buildingObjectApplications.html for more details.

3.1 Mapping Attributes To Columns

The attribute of aclasswill map to zero or more columnsin arelational database. Remember, Attributes
not all attributes are persistent. For example, an Invoice class may have agrandTotal map to
attribute that is used by instances for cal culation purposes but that isn't saved to the columns.
database. Furthermore, because some attributes of an objects are objects

in their own right, a Customer object has an Address object as an attribute, sometimes asingle OO attribute
will map to several columnsin the database (actually, chances are that the Address class will map to one or
moretablesinitsown right). Theimportant thing isthat thisisarecursive definition: At some point the
attribute will be mapped to zero or more columns.

3.2 Mapping Classes To Tables

Classes map to tables, although often not directly. Except for very simple databases, you will never have a
one-to-one mapping of classesto tables. In this section we will explore three different strategies for
implementing inheritance structures to arelational database and see an example where dissimilar classes map
to onetable.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 8

3.2.1 Implementing Inheritancein a Relational Database

By using Ol Dsto uniquely identify our objectsin the database we greatly simplify our strategy for database
keys (table columns that uniquely identify records) making it easier to implement inheritance, aggregation,
and instance relationships. First let’s consider inheritance, the relationship that throwsin the most
interesting twists when saving objectsinto arelational DB. The problem basically boils down to “How do
you organize the inherited attributes within the database?’ The way in which you answer this question can
have amajor impact on your system design.

There are three fundamental solutions for mapping inheritance into arelational database:

1

Useonetablefor an entireclasshierarchy. Map an entire class hierarchy into onetable, where all the
attributes of all the classesin the hierarchy are stored in it. The advantages of this approach are that it
is simple — polymorphism is supported when a person either changes roles or has multipleroles(i.e., the
person is both a customer and an employee). Ad hoc reporting is also very easy with this approach
because all of the data you need about a person is found in one table. The disadvantages are that every
time anew attribute is added anywhere in the class hierarchy anew attribute needs to be added to the
table. Thisincreasesthe coupling within the class hierarchy — If amistake is made when adding a
single attribute it could affect all the classes within the hierarchy and not just the subclasses of
whatever class got the new attribute. It also wastes alot of space in the database.

Useonetable per concrete class. Each table includes both the attributes and the inherited attributes of
the class that it represents. The main advantage of this approachisthat it isstill fairly easy to do ad hoc
reporting as all the data you need about asingle classis stored in only onetable. There are several
disadvantages however. First, when we modify aclass we need to modify its table and the table of any
of its subclasses. For example if we were to add height and weight to the person class we would need
toadditin all three of our tables, alot of work. Second, whenever an object changesitsrole, perhaps
we hire one of our customers, we need to copy the datainto the appropriate table and assign it anew
OID, once again alot of work. Third, itisdifficult to support multiple roles and still maintain data
integrity (it'spossible, just harder than it needsto be).

Useonetableper class. Create onetable per class, the attributes of which are the OID and the
attributes that are specific to that class. The main advantage of this approach isthat it conformsto
object-oriented concepts the best. 1t supports polymorphism very well asyou merely have recordsin
the appropriate tables for each role that an object might have. Itisalso very easy to modify
superclasses and add new subclasses as you merely need to modify/add one table. There are several
disadvantages to this approach. First, there are many tablesin the database, one for every class (plus
tablesto maintain relationships). Second, it takes longer to read and write data using this technique
because you need to access multiple tables. This problem can be alleviated if you organize your
database intelligently by putting each table within a class hierarchy on different physical disk-drive
platters (this assumes that the disk-drive heads all operate independently). Third, ad hoc reporting on
your databaseis difficult, unless you add viewsto simulate the desired tables.

Let's consider an example. Figure 3 presentsa UML (Rational, 1997) class diagram of asimple class
hierarchy (the methods aren’t shown) that | will map using each strategy, the resulting data models for
which are shown in Figure 4. Notice how each strategy resultsin adifferent datamodel. Also notice how
OIDs have been used for the keys. For the one table per class strategy the OID is used as both the primary
key and as the foreign key to the Per son table.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler

Person

{abstract}

name
phoneNumber

i

Employee Customer
sartDate customer!D
preferences

Figure3. A UML classdiagram of a simple classhierarchy.

One Table
Per Hierarchy

Person

oID

name
phoneNumber
customerNumber
preferences
startDate
objectType

One Table One Table
Per Concrete Class Per Class
Customer Person
QD (0]1D)]
name name
phoneNumber phoneNumber
customerNumber objectType
preferences F -
Fo
[
|
Employee s -—isa- lisa-—- -
oD Customer Employee
name PE—
phoneNumber QD (FK) OID (FK)
tartDate customerNumber startDate
preferences

Figure4. Mappingtheclass hierarchy using each strategy.

An interesting issue with the second mapping strategy, using one table per concrete class, iswhat do you
do when you have someone who is both an employee and a customer*? The basic issue iswhat tableisthe
authorative source for the name and phone number of the person? Thisis something that you will need to

2The use of the relationship “isa” in Figure 4is not inheritance in this case, implied by the fact that the
relationship is not mandatory. Sometimes an employeeis a customer, sometimes they are not. Y et another
exampl e of the object/relational impedance mismatch.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 10

decide, aswell as rules for what to do when people (no longer) become an employee or customer, and then
support it in your code.

To understand the design trade offs between the three strategies, consider the simple change to our class
hierarchy presented in Figure 5: an Executive class has been added which inherits from Employee. Figure 6
presents the updated data models. Notice how very little effort was required to update the one table per
hierarchy strategy, although the obvious problem of wasted space in the database has increased. With the
one table per concrete class strategy we only needed to add a new table, although the issue of how do we
handle objects that either change their relationship with us (customers become employees) has now become
more complex because we' ve added the issue of promoting employees to become executives. With the third
mapping strategy, mapping a single classto asingle table, we needed to add a new table, one that included
only the new attributes of Executive. The disadvantage of this approach isthat it requires several database
accesses to work with instances of Executive. The point to go away with isthat none of the approaches are
perfect, that each hasits strengths and weaknesses (which are summarized in Table 1).

Per son
{abstract}
name
phoneNumber
Employee Customer
gartDate customerlD

preferences

Executive

bonus

Figure5. Extendingthehierarchy.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler

1

One Table One Table One Table
Per Hierarchy Per Concrete Class Per Class
Person Customer Person
QD (0]1D)] QD
name name name
phoneNumber phoneNumber phoneNumber
customerNumber customerNumber objectType
preferences preferences T
startDate i T
bonus J: |
objectType e—isad ligge—me
] yp Employee .,@ isa isa ;
QID Customer Employee
name P —
QID (FK) QID (FK)
phoneNumber customerNumber startDate
startDate
preferences
1
ié a
Executive g
oD Executive
name P —
phoneNumber %u(gK)
startDate
bonus
Figure 6. Extending the data models.
Factorsto Consider Onetable per Onetable per Onetable per class
hierarchy concr ete class
Ad-hoc reporting Smple Medium Medium/Difficult
Ease of implementation Smple Medium Difficult
Ease of data access Smple Smple Medium/Simple
Coupling Very high High Low
Speed of data access Fast Fast M edium/Fast
Support for polymorphism Medium Low High

Tablel. Comparing the approachesto mapping inheritance.

3.2.2 Mapping Several ClassesTo OneTable

Figure 7 shows a class diagram of the implementation of an address that uses two classes, Address and Zip
Code. The Zip Code class was created to encapsul ate the logic of validating a zip code number and
formatting it appropriate for mailing labels. For exampleisthe state correct (in the U.S. the first two digits of
azip codeindicate the state) and hyphens should be inserted at appropriate places when the zip code is

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 12

output (the U.S. post office recently introduced along version of azip code with three sectionsto it). The
bottom line is that the Zip Code class encapsul ates cohesive behavior that is relevant to zip codes.

Address
ZipCode
-street : String 1.1
-u_nitNum_ber : String 11 has -number : Integer
-City : Stnng +labelString() : String
-state . String +validate() : Boolear]

+labelString() : String

Figure7. A UML classdiagram representing a simple OO implementation of an address.

In arelational database, however, the behavior implemented by the Zip Code classisn’t relevant, therefore a
Zip code can map to asingle columninthe Addresstable. Figure 8 showsthe datamodel for Addressfor
this particular situation (we'll revisit this example later in the paper for an alternative data model design
based on new requirements). Thelesson to be learned isthat sometimes two dissimilar classeswill map to
onetable. Thisoccurs because class diagrams take a greater scope than data models — they show data and
behavior whereas data models only show data.

Address

addressOID
street
unitNumber
city

state
ZipCode

Figure 8. A data model showing a possibleimplementation for an address.

3.3 Mapping Relationships

Not only do we need to map objects into the database, we also need to map the relationships that the object
isinvolved with so they can berestored at alater date. There are two types of relationship that an object
can beinvolved with: association and aggregation. To map these relationships effectively we must
understand the difference between them, how to implement rel ationships generally, and how to implement
many-to-many relationships specifically.

3.3.1 TheDifference Between Association and Aggregation

From a database perspective the only difference between association and aggregation relationshipsis how
tightly the objects are bound to each other. With aggregation anything that you do to the wholein the
database you almost always need to do to the parts, whereas with association that isn’t the case.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 13

parked at 0..n 1.1

Airport Airplane Wing

0.1

Figure9. Thedifference between instance and aggr egation relationships.

In Figure 9 (Ambler, 1998a) we see three classes, two of which have a simple association between them and
two which share an aggregation relationship. From a database point of view aggregation and association
are different in the fact that with aggregation you usually want to read in the part when you read in the
whole, whereas with an association it isn’t always as obvious what you need to do. The same goes for
saving objects to the database and deleting objects from the database. Granted thisis usually specific to
the business domain, but this rule of thumb seemsto hold up in most circumstances. The differences
between aggregation and association are discussed in further detail in my second book, Building Object
Applications That Work (Ambler, 19983).

3.3.2 Implementing Relationshipsin Relational Databases

Relationshipsin relational databases are maintained through the use of foreign keys. A foreign key isadata
attribute(s) that appearsin onetable that may be part of or is coincidental with the key of another table.
Foreign keys allow you to relate arecord in one table with arecord in another. To implement one-to-one and
one-to-many relationships you merely have to include the key of one table in the other table. Let’'slook at
an example.

Figure 10. Implementing relationshipsin arelational database.

Employee
Position employeeOID Task
— positionOID (FK) _
p_osmonOID csat name +O_a33|gned_0< taskOID
title r——works at —OH] Slar to employeeOID(FK)
salaryRange starté ate description

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 14

In Figure 10° (Ambler, 1998a) we see three tables, their keys (Ol Ds of course), and the foreign keys used to
implement the relationships between them. First, we have aone-to-one relationship between Position and
Employee. Toimplement this relationship we added the attribute positionOID, which isthe key of Position,
although we could just as easily have added aforeign key called employeeOID in Position instead. Second,
we implement the many-to-one relationship (also referred to as a one-to-many relationship) between
Employee and Task using the same sort of approach, the only difference being that we had to put the
foreign key in Task because it was on the many side of the relationship.

3.3.3 Implementing Many-To-Many Reationships

To implement many-to-many relationships we need to introduce the concept of an associative table, atable
whose sole purpose is to maintain the relationship between two or moretablesin arelational database. In
Figure 11 (Ambler, 1998a) we see that there is a many-to-many relationship between customers and
accounts. InFigure 12 (Ambler, 1998a) we see how to use an associative table to implement a many-to-many
relationship. Inrelational databases the attributes contained in an associative table are traditionally the
combination of the keysin the tablesinvolved in the relationship. It has been my experience, however, that
itiseasier toimplement associative tables if you treat them as just another type of table— Y ou assign them
their own key field, in our case OID, and then add the necessary foreign keys to maintain the relationship.

Customer Account
customer|D accesses 1.n | hglgnce
preferences 1.n accountNumber

Figure11. Two classeswith a many-to-many reationship between them.

The advantage of thisisthat all tables are treated the same by your persistence layer, simplifying its
implementation. Another advantage is one of run-time efficiency: some relational databases have problems
joining tables that have many attributesin their keys. Thereisalso the possibility that one or more columns
may be added to the Accesses table to represent the security access rights for the customer on the account.
Perhaps a given customer can deposit money into an account, but not withdraw, whereas another customer
has full access to the account.

Customer Accesses Account
customerQOID []ID)] accountOID
preferences I t< customerOID (FK) I H accountNumber
customer|D accountOID (FK) balance

Figure 12. Implementing a many-to-many relationship in arelational database.

% All datamodels in this paper are shown using the Data Structure Diagram notation from the mid-1980s. All
class models are shown using the Unified Modeling Language (UML). Please refer to my second book,
Building Object Applications That Work (Ambler, 1998a), for an explanation of each notation.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 15

3.3.4 The Same Classes/Tables, Different Relationships

Sometimes you can have a direct mapping between classes in your object application to tablesin your
relational database, yet the relationships between the classes/tables aren’t the same. For example, Figure 13
shows an alternative implementation of the datamodel of Figure 8. In this case your organization has
decided to purchase alist of all the zip codesin the countries that you do businessin so that you can
increase the quality of your address data. Unlikein the class diagram of Figure 7, which had a one-to-one
relationship between the Address class and the Zip Code class, Figure 13 shows a many-to-one relationship.
Assuming both models are correct, and for the purpose of this discussion they are, how can thisbe? The
answer isthat the needs are different.

Address

addressOID

street ZipCode
unitNumber >O——has a——OH zipCodeOID
city zipNumber
state

ZipCodeOID (FK)

Figure 13. A data model showing an alter nate implementation for an address.

The class diagram in Figure 7 shows that the OO application only needs a Zip Code class to encapsul ate the
validation rules of azip code—isitintheright format, isitin theright state — it does not care about the fact
that there are several addresses with the same zip code. There were no business requirements stating that a
zip code has many addressesin it. The datamodel inFigure 13 showsthat it is possible to have several
addressesin the same zip code, which is an accurate way to model the data. Figure 13 also shows that
sometimes you’ |l have an address with a zip code that isn’t in the list that you bought (depending on the
country you live in, even the post office does not have an accurate list of all zip codes). The zip code might
be correct, it justisn't in your official list of zip codes. Y ou might decide to have insertion triggersin your
database to ensure that you don’t insert an address without a proper zip code (perhaps if the zip code does
not exist in the table you automatically add it to the list).

Scott's Soapbox — Data Models Don't Always Reflect Actual Requirements

The differences between the class model of Figure 7 and the data model of Figure 13 reveal afundamental
flaw in the approach taken by many data models. Don't get me wrong, the datamodel isin fact accurate, it
just that it doesn't reflect the actual requirements of the organization that it was being modeled for. What is
the impact of this mistake? First, the code written to support this data model, something that few data
modelers take into consideration (very often they don't write any code at all) is much more complex than the
code that would be written to support the class model. The association modeled in the data model is much
more complex than that of the class model: it is bi-directional and optional. Second, there is now adifference
(likely unbeknownst to the data model ers) between the software being built and the actual needs of the
users of that software. Albeit thisisasmall difference, the exampleisvery simple for the sake of discussion,
but any difference will result in agreater training burden and cost of support for your organization.

Y es, you could rework your class diagram to take advantage of the fact that you now have this official list of
Zip codes, perhapsto do analysis of where your customers live, but until you have an actual requirement to
do so you shouldn’t — perhaps your users don’t need such athing.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 16

4. Concurrency, Objects, and Row Locking

For thiswhite paper concurrency deals with the issues involved with allowing multiple people simultaneous
access to the same record in your relational database. Becauseit is possible, if you allow it, for several
users to access the same database records, effectively the same objects, you need to determine a control
strategy for allowing this. The control mechanism used by relational databasesislocking, and in particular
row locking.

4.1 Pessimistic Vs. Optimistic Locking
There are two main approaches to row locking: pessimistic and optimistic.

1. Pessimisticlocking. An approach to concurrency in which an itemislocked in the persistence
mechanism for the entiretimethat it isin memory. For example, when a customer object is edited alock
is placed on the object in the persistence mechanism, the object is brought into memory and edited, and
then eventually the object is written back to the persistence mechanism and the object is unlocked.
This approach guarantees that an item won’t be updated in the persistence mechanism whiletheitemis
in memory, but at the same time is disallows others to work with it while someone else does. Pessimistic
locking isideal for batch jobs that need to ensure consistency in the data that they write.

2. Optimisticlocking. An approach to concurrency in which an item islocked in the persistence
mechanism only for thetime that it is accessed in the persistence mechanism. For example, if acustomer
object isedited alock is placed on it in the persistence mechanism for the time that it takestoread itin
memory and then it isimmediately removed. The object is edited and then when it needsto be saved it
islocked again, written out, then unlocked. This approach allows many people to work with an object
simultaneously, but also presents the opportunity for peopleto overwrite the work of others.

Optimistic locking is best for online processing.

Y eswith optimistic locking you have an overhead of determining whether or not the record has been
updated by someone else when you go to saveit. Thiscan be accomplished viathe use of acommon
timestamp field in all tables: When you read arecord you read in the timestamp. When you go to write the
record you compare the timestamp in memory to the one in the database, if they’ re the same then you
update the record (including the timestamp to the current time). If they’ re different then someone else has
updated the record and you can’t overwrite it (therefore displaying a message to the user).

5. Stored Procedures

A stored procedure is basically afunction that runs on arelational database server. Although SQL codeis
usually amajor component of a stored procedure most database vendors have their own proprietary
programming language, each with its strengths and weaknesses. A stored procedure typically runs some
SQL code, potentially massages the data, and then hands back aresponse in the form of zero or more
records or as adatabase error message. Stored procedures are avery powerful feature of modern relational
databases.

When mapping objects to relational databases there are two situations where using stored procedures make
sense. Firstiswhen you're building a quick and dirty prototype that you intend to throw away, assuming
that you don’t have a solid persistence layer (Ambler, 1998c) already built, then thisis most likely the
quickest way to get your prototype up and running. The second situation iswhen you’re mapping to a
legacy database whose design is completely inappropriate for objects and you aren’t able to rework it for

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 17

your specific needs. Y ou can create stored procedures to read and write records that |ook like the objects
that you want. Note that you don’t need to write this code using stored procedures, instead you could do it
in your language of choice and run it outside of your database (although perhaps still on your server
machine to avoid unnecessary network traffic).

There are, however, several reasons why you don’t want to use stored procedures when mapping objectsto
relational databases. First, the server can quickly become a bottleneck using this approach. You really need
to have your act together when moving functionality onto your server —asimple stored procedure can bring
the server to it kneesif it isinvoked often enough. Second, stored procedures are written in a proprietary
language, and as anyone who has ever ported between database vendors, or even between database
versions from the same vendor, this can be a show-stopper. The one thing that you can count onin this
industry is change, and you can count on at least upgrading your database in time. Third, you dramatically
increase the coupling within your database because stored procedures directly access tables, coupling the
tables to the stored procedures. Thisincreased coupling reduces the flexibility of your database
administrators, when the want to reorganize the database they need to rewrite stored procedures, and
increases the maintenance burden of developers because they have to deal with the stored procedure code.

Thebottom lineisthat stored proceduresarelittle better than a quick hack used to
solve your short-term problems.

6. Triggers

A trigger is effectively a stored procedure that is automatically invoked for specific actionson atable. Itis
common to defineinsert triggers, update triggers, and deletion triggers for atable which will be invoked
before an insertion, update, or deletion takes place on that table. The trigger must run successfully
otherwise the action is aborted. Triggers are used to ensure referential integrity in your database.

Like stored procedures, triggers are written in a proprietary language for each database making them difficult
to port between vendors and sometimes even versions of the same database. The good newsis that many
data modeling tools* will generate basic triggers for you based on the relationship information defined in
your datamodel. Aslong asyou don’t modify the generated code, if you port between vendors/versions
you can always regenerate your triggers from your data model.

Y ou can find these tools easily by doing asearch on the Internet.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 18

7. Process Patterns for Mapping Objects To RDBs

Figure 14 depicts the Persistence Modeling process pattern (Ambler, 1998b), in many ways a subset of the
Detail Modeling process pattern (Ambler, 1998b) of Figure 15, which indicates the process for modeling the
persistence aspects of your object-oriented application. In case process patterns are new to you, a process
pattern describes an approach to developing software that is proven in practice to work effectively. The
Persistence Modeling process pattern shows that your Object-Oriented Model, the key to which isyour
Class Model, should drive the development of your Logical Persistence Model whichinturn drivesthe
development of your Physical Persistence Model. The Persistence Modeling process pattern indicates that
there exists two types of Persistence Model: aLogical Persistence Model and a Physical Persistence Model.
A Logical Persistence Model is used to show what you want to build; in effect it isan analysismodel. A
Physical Persistence Model is used to show how you intend to build your persistence schema, in effect it is
adesign model. For the sake of our discussion, we'rereally talking about logical data models and physical
data models.

Object-Oriented Logical Physical
Model Persistence Persistence
Model Model

Figure 14. ThePersistence Modeling process pattern.

Logical Persistence Models Offer Little Value

Although Figure 14 includes alogical persistence model, the reality isthat most experienced object mappers
go straight from their OO modelsto their physical persistence model. The extrainformation that |ogical
persistence models contain such as domain values for attributes (something significantly more complex in
the OO world considering many attributes are other objects) and candidate keys (a spectacularly bad idea as
we saw previously) can actually be included in your class model if needed. On the other hand, the one
advantage of modeling candidate keysis that they indicate potential ways that your users will access data --
important information for tuning your database. However, how your users will interact with your system
should be reflected in your use cases so once again I'm not so sure we actually need to model candidate

keys.

| typically suggest developing logical persistence models to organizationsthat areinitially transitioning to
object technology to support acomfort level that many experienced modelers can accept. Thisisthe reason
why | have included logical persistence modeling in the Persistence Modeling process pattern. What I’ve
seen happen is that people, often the data modelers doing the work, quickly realize that logical persistence
modeling is simply awaste of effort that can be cut out of the process.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 19

User Interface Interface-Flow
Prototype < > Diagram
UA AD
i CRC
Model
U,A
A 4 Y)
Use-Case Use Cases - M M
Diagram < » -
A U,Ale Physical
N N Data Model
\ 4 D
Activity e v i i
» Diagram Class
AD M Diagram
ADP v
A h
Sequence
A 4 A 4 D|&ran']
Deployment Component | M M > D,P
Diagram Diagram y
AD AD
h h
KSy_ User v \ 4 A A 4
A - Analvst Technical Statechart Collaboration
B ,y > Prototype Diagram Diagram
D= De'5|gner D. P D.P D.P

P= Programmer

Figure 15. The Detailed M odeling Process pattern.

In Figure 15 the boxes represent the main techniques/diagrams of OO modeling and the arrows show the
relationshi ps between them, with the arrowheads indicating an “input into” relationship. For example, we
seethat aprocess model isaninput into aclass diagram. In the bottom right-hand corner of each box are
letters which indicate who istypically involved in working on that technique/diagram. Thekey is
straightforward: U=User, A=Analyst, D=Designer, and P=Programmer. The letter that is underlined
indicates the group that performs the majority of the work for that diagram. For example, we see that users
form the mgjority of the peopleinvolved in developing a CRC model and designers form the majority of
those creating state diagrams.

Aninteresting feature of Figure 15isthat it illustrates that the object-oriented modeling processis both
serid inthelarge and iterative in the small. The serial nature is exemplified when you look from the top-left
corner to the bottom right corner: the techniques move from requirements gathering to analysisto design.

Y ou see theiterative nature of OO modeling from the fact that each technique drives, and is driven by, other
techniques. In other words you iterate back and forth between models.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 20

Figure 16 depicts an updated view of the solution to the Detailed M odeling process pattern as described in
The Object Primer 2™ Edition (Ambler, 2000). The main differenceistheinclusion of new artifacts (sorry
about that, but development is hard after all) to reflect the real-world needs of complex application
development.

w| User interface |

Flow Diagram
U Es‘se‘mlfa\ » | User Interface v
s:r nterface Prototype
rototype [Component Deployment ‘
Diagram Diagram
Collaboration
Diagram
ch c Esszn(la\ Use Case State Chart A A
ange Cases 'se Case Model Diagram
Model
3
y
Sequence Class Model
CRC Model Business Rules Diagram y (Design)
Activity
Diagram
Y
|] |
|
Non-Functional Constraint: Class Model Persistence Source
Requirements onstraints (Analysis) Model Code

T

Figure 16. Theartifacts of business softwar e development.

Blatant Advertising — Purchase The Object Primer, 2™ Edition (Summer of 2000)!
----------- The Object Primer 2™ Edition is a straightforward, easy to understand
The Oblect PrImer introduction to object-oriented concepts, requirements, analysis, and design

Tt Lireini ey o0, hwaaw

techniques applying the techniques of the Unified Modeling Language
(UML). The Object Primer goes further to show you how to move from object
modeling to object-oriented programming, providing Java examples, and
describes the techniques of the Full Lifecycle Object-Oriented Testing
(FLOOT) methodol ogy to enable you to test all of your development artifacts.
It also puts this material in the context of the leading software processes,
including the enhanced lifecycle for the Unified Process, the process patterns
of the Object-Oriented Software Process (OOSP), and the best practices
Extreme Programming (XP). Visit www.ambysoft.com/theObjectPrimer.html for
more details.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 21

7.1 Why is The Persistence Modeling Process Pattern Important?
The answer to this question is simple: it provides aviable strategy for effectively modelingthe A penny

persistence needs of your OO applications. Data models only take into account half of the saved isa
picture (data) whereas object-oriented models take into account the entire picture (dataand penny
behavior). By using your OO modelsto drive the development of your data models you persisted.

ensure that your database schemawill actually support the needs of your application — after ©
all, your OO application is built based on your OO models. This approach should make sense,

by building both your application and your persistence mechanism from the same model you
improve the chance that they will work together effectively.

Using data modelsto drive the devel opment of object-oriented models is acommon process anti-pattern
that many organizationsfollow. A process anti-pattern, as the name suggests, is an approach to developing
softwarethat is proven in practice to not be very effective. Many organizations have used their existing
data models as input into the development of their class models, only to find later that resulting model
results in a clumsy implementation of what needs to be built. Practice shows that datamodels are an
insufficient basis from which to create a class model for the following reasons:

1. Datamodesaretoo narrowly focused. Few data models take behavior and object-oriented concepts
such asinheritance into account in their design. In short, data models focus on asmall portion of the
overall picture, that of data.

2. Many preceptsof relational theory have proven disastrousin practice. Datamodels often include
many assumptions derived from classic relational theory (keys can have business meaning, composite
keys are good idea, and centralized databases make sense) that prove to be undesirable from an object-
oriented and/or software engineering point of view.

3. Datamodesarerarely based on proven patterns common to the object world. Datamodelswill not take
key object-oriented techniques such as design patterns (Gammaet. al. 1995) and analysis patterns
(Fowler, 1997; Ambler, 1998a) into account. Asanyone who has worked with analysis and design
patterns knows, they provide fantastic opportunities for improving the extensibility and maintainability
of your work.

4. Datamodelsmay not reflect actual requirements. Data models are often devel oped without taking the
actual user requirements for the software into account, instead they are developed by focusing solely
on the data.

5. Your requirements havelikely changed since the data model was developed. Even if your legacy data
model was devel oped based on the actual requirements, the requirements have likely changed anyway
implying that your data model isn't accurate anyway.

6. Datamodeling naming conventionsrarey make sensefor OO development. Naming conventions that
made perfect sense in the data-modeling world are often inappropriate for the object-modeling world.
Dueto the high levels of consistency between and common paradigm supported by the models of the
OO world (Ambler, 1998a; Ambler, 1998b) that is not exhibited by the models of the structured world
naming conventions for classes and their attributes are applied to awide range of models— class
diagrams, sequence diagrams, collaboration diagrams, activity diagrams, and source code to name afew
—instead of asingle datamodel. The point to be madeisthat you need to take awide range of issues
into account when setting naming conventions, issues that would not have been considered when
setting naming conventions for your data models. Remember, datamodels only take avery small
portion of the overall design picture into account.

7. Thereismoreto OO modeingthan classdiagrams. Even if you could magically derive a class model
from adatamodel, you'd still need to do all the requirements gathering, analysis, and design work to
devel op these other models.

Following the Persistence Modeling process pattern you expend the majority of your modeling efforts

getting your class model right —including appropriate normalization/denormalization issues, atopic that |
cover in detail in Building Object Applications That Work (Ambler, 1998a). Once you are satisfied that your

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 22

classmodel is stable, you generate your logical data model from it (many CASE tools support thiswith a
press of abutton) and then create your physical data model from there. It would be a serious mistake to
assume that you are now simply in the old data-modeling world where all the logical to physical data
modeling rules still apply. Y es, you need to take access and database performance considerationsinto
account when devel oping the physical data model, but you also need to consider the fact any changes that
you make in your physical datamodel also has performance impactsin your application. The more that the
datamodel deviates from your class model, the greater the performance impact of your mapping. This poses
an interesting problem: do you leave your class model unchanged (after all, it models what you actually
need to build) and accept the performance hit from the greater mapping complexity, do you modify your
class model to reduce the performance hit (but then bastardize your application as aresult), or do you
accept the performance hit in your database?

Blatant Advertising — Purchase Process Patterns today!
This book presents a collection of process patterns for successfully
initiating a software project and taking it through the construction

PROC ESS phase. It provides awealth of advice for engineering requirements,

PATTERNS modeling, programming, and testing. It puts these topics in the context
Bulkding Lovge-Scale Spstoms Using of. aproven §0ftware process for the de_vel opment of Igrge—scal e
Object Technology mission-critical software, covering topics that you typically don’t find
scort wo amsine 2 in other books about object-oriented development such as project

management, quality assurance, risk management, and deliverables
management. Object-oriented development is hard, particularly if you
are building systems using n-tier technology such as Enterprise
JavaBeans (EJB) or even the “simple” Javaplatform, and you need to
understand the big picture to be successful. Process Patterns, and its
sister book, More Process Patterns give you that big picture. For more
information, and to order online, visit
www.ambysoft.com/processPatterns.html

Thisbook presents a collection of process patterns for successfully
delivering a software project and then operating and supporting it once
itisin production. It providesawealth of advice for testing your
object-oriented application, for reworking it, for preparing to transition it
to your user community, and for supporting it onceit isin production.
M"‘i‘”iﬂg Lorge-Seale Systerns It puts these topics in the context of a proven software process for the
0 Diject Technolagy - - - .
3COTT W, AMBLIE development of large-scale, mission-critical software, covering topics
that you typically don’t find in other books about object-oriented
development such as project management, quality assurance, risk
management, and deliverables management. Object-oriented
development is hard, particularly if you are building systems using n-
tier technology such as Enterprise JavaBeans (EJB) or even the
“simple” Javaplatform, and you need to understand the big picture to
be successful. More Process Patterns, and its sister book, Process
Patterns give you that big picture. For more information, and to order
online, visit www.ambysoft.com/moreProcessPatterns.html

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 23

7.2 The Implications?

So what are the implications to you and your organization? First and foremost, you Themajority of your
will need to train many of your existing data modelers in object modeling organization’sdata
techniques. Yes, you will still need datamodelersto aid in the development of a modelerswill need to
datamodel based on the needs of your OO models, but it isvery obviousthat you beretrained in OO
will need significantly fewer data modelers than you need now. Second, your data modeling techniques.
modeling community needsto come to grips with the fact that their rolein software

development is significantly reduced. Inthe past the data model was equal in Your enterprisedata
importance to your process model, in the object world it playsasecondary role(a¢ model islittlemore
best) to your classmodel. Itisadifficult fact for many data modelersto accept, but than wall paper in the
once they do they realize that the object-modeling world offers many opportunities OO world.

for them. Third, many organizations will need to accept that their existing

enterprise data model, although important in the past, is now little more than a

source of entertainment for their OO modelers.

Scott’s Career Advicefor Data M odelers

L ogical data modelers. Thereality isthat thereis no longer any need for logical data models, other than
perhaps for interim hand-holding of people who haven’'t come up to speed on how to develop software
following the OO paradigm. Theimplication isthat logical data modelers either need to transition
themselves into object modeling and/or physical data modeling or find employment elsewhere. The good
newsisthat many of the core values of logical data modelers—to model, to take an enterprise view, to
follow guidelines and conventions — are incredibly valuable. The bad newsisthat their chosen modeling
mechanism, data models, are not sufficient and have been superceded by object-oriented modelers. | realize
that this adviceis spectacularly difficult for you to accept, but the sooner that you do the better you will be
forit.

Physical data modelers. Because thereisstill aneed for physical data models, regardless of what many self-
proclaimed OO guruswill tell you, physical data modelers are still needed. Y ou will need to learn how to
map objects to RDBs and the increased performance complexities associated with doing so. The good news
isthat thereis avery strong job market for people who understand how to do this.

Blatant Advertising—Hire Ronin International Consultantstoday!
Ronin International is a software consulting company that specializesin
providing high-end object development services such as Enterprise JavaBeans

(EJB) development, software process mentoring and tailoring, software

] A architecture consulting (including reviews), and transitioning existing staff to
j object technologies and techniques. | am President of the company and work
with clients around the world as a senior consultant. Visit www.ronin-intl.com
for details.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 24

8. The Realities of Mapping Objects To Relational Databases

This section describes and expands on several mapping issues that are described in the October 1997 issue
of Software Development (Ambler, 1997€). Theissuesare:
Objects and Relational Databases Are the Norm
ODBC and JDBC Classes Aren’t Enough
Y ou Need a Persistence Layer
Hard-Coded SQL isan Incredibly Bad Idea
You Haveto Map to Legacy Data
The DataModel Doesn’'t Drive Y our Class Diagram
Joins are Slow
Keys With Business Meaning Are aBad Idea
Composite Keys AreaBad Idea
Y ou Need Several Inheritance Strategies
Stored Procedures Are aBad Idea

8.1 Objects and Relational Databases Are the Norm

For years object gurus claimed that you shouldn’t use relational databases to store objects because of the
“object/relational impedance mismatch.” Y es, the object paradigm is different from the relational paradigm,
but for 99% of you the reality isthat your development environment is object oriented and your persistence
mechanism isarelational database. Deal withit.

8.2 ODBC and JDBC Classes Aren’t Enough...

Although most development environments come with rudimentary access mechanisms to relational
databases, they are at best agood start. Common “generic” mechanismsinclude Microsoft’s Open
Database Connectivity (ODBC) and Java s Java Database Connectivity (JDBC) — Most object devel opment
environmentsinclude class libraries that wrap one of these standard approaches.

The fundamental problem with these classlibraries, as well as those that wrap access to native database
drivers, arethat they are too complex. Inawell-designed library | should only have to send objects
messages like delete, save, and retrieve to handle basic persistence functionality. The interface for working
with multiple objects in the database isn’t much more complicated (Ambler, 1997a). The bottom lineisthat
the database access classes provided with your development environment are only a start, and aminimal
one at that.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 25

Blatant Advertising — Purchase The Elements of Java Style today!

Thisbook (Vermeulen et. a., 2000) presents a collection of strategiesfor

writing superior Java source code. This book presents awider range of
guidelinesthan what is presented herein this paper, and more importantly

Java. presents excellent source code examples. It covers many topics that are not
covered in this paper, such as type safety issues, exception handling,

assertions, and concurrency issues such as synchronization. This paper was

combined with Rogue Wave' sinternal coding standards and then together

i R St were evolved to become The Elements of Java Style, so you should find the
book to be an excellent next step in your Javalearning process. Visit
http://www.ambysoft.com/elementslavaStyle.html for more details.

8.3 Therefore You Need a Persistence Layer

A persistence layer encapsul ates access to databases, allowing application programmersto focus on the
business problem itself. This means that the database access classes are encapsul ated providing asimple
yet complete interface for application programmers. Furthermore, the database design should be
encapsulated so that programmers don’t need to know the intimate details of the database layout: that’s
what database administrators (DBASs) arefor. A persistence layer completely encapsulates your permanent
storage mechanism(s), sheltering you from changes.

Theimplication isthat your persistence layer needsto use adata dictionary that provides the information
needed to map objectsto tables. When the business domain changes, and it always does, you shouldn’t
have to change any code in your persistence layer. Furthermore, if the database changes, perhaps a new
versionisinstalled or the DBA rearranges some tables, the only thing that should change is the information
in the data dictionary. Simple database changes should not require changes to your application code, and
data dictionaries are critical if you want to have a maintainabl e persi stence approach.

8.4 Hard-Coded SQL is an Incredibly Bad Idea

A related issueis one of including SQL (structured query language) code in your object Savethe
application. By doing so you effectively couple your application to the database design, which ~ whale
reduces both maintainability and enhanceability. The problem isthat whenever basic changes objects.
are made in the database, perhaps tables or columns are moved or renamed, you have to make ©
corresponding changes in your application code. Yuck! A better approach isfor the

persistence layer to generate dynamic SQL based on the information in the data dictionary.

Y es, dynamic SQL isalittle slower but the increased maintainability more than makes up for it.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 26

8.5 You Have to Map to Legacy Data...

Although the design of |egacy databases rarely meet the needs of an object-oriented application, the reality
isthat your legacy databases are thereto stay. The push for centralized databases in the 1980s has now left
uswith acentralized disaster: Database schemas that are difficult to modify because of the multitude of
applications coupled to them. Theimplicationisthat few developers can truly start fresh with arelational
database design that reflects their object-oriented design, instead they must make do with alegacy
database. Earlier | discussed theissuesinvolved with loading data from legacy source datainto an object-
oriented application.

8.6 ...But The Data Model Doesn’t Drive Your Class Diagram

Just because you need to map to legacy datait does not mean that you should bastardize your object
design. I've seen several projects crash in flames because a legacy data model was used as the basis for the
classdiagram. The original database designers didn’t use concepts like inheritance or polymorphism in their
design, nor did they consider improved relational design techniques (see below) that become apparent when
mapping objects. Successful projects model the business using object-oriented techniques, model the
legacy database with a data model, and then introduce a“legacy mapping layer” that encapsulates the logic
needed to map your current object design to your ancient datadesign. You' Il sometimesfind it easier to
rework portions of your database than to write the corresponding mapping code, code that is convoluted
because of either poor or outdated decisions made during data modeling.

For a better understanding of the object-oriented modeling process, | invite you to read my second and third
books, Building Object Applications That Work (Ambler, 1998a) and Process Patterns(Ambler, 1998b),
some of the few OO devel opment books that actually shows how data modeling fitsinto the OO
construction process.

8.7 Joins are Slow

Y ou often need to obtain data from several tables to build acomplex object, or set of objects. Relational
theory tellsyou to join tables to get the data that you need, an approach that often proves to be slow and
untenable for live applications. Therefore don't dojoins! Because several small accesses are usually more
efficient than one big join you should instead traverse tables to get the data. Part of overcoming the
object/relational impedance mismatch isto traverseinstead of join whereit makes sense. Try it, it works
reglly well.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 27

8.8 Keys With Business Meaning Are a Bad Idea...

Experience with mapping objects to relational databases leads to the observation that keys shouldn’t have
business meaning, which goes directly against one of the basic tenets of relational theory. The basicideais
that any field that has business meaning is out of the scope of your control and therefore you risk having its
value or itslayout change. Trivial changesin your business environment, perhaps customer numbers
increase in length, can be expensive to change in the database because the customer number attributeis
used in many places asaforeign key. Yes, many relational databases now include administration tools to
automate this sort of change, but even so it’ s still alot of error-prone work. Intheend | believe that it
simply does not make sense for atechnical concept, a unique key, to be dependent on businessrules.

Theinteresting thing is that datamodelers call keys with business meaning ‘ smart keys,” yet experience has
shown that a more appropriate term would have been ‘incredibly stupid keys.” Goesto show what data
model ers know!

89 ...And So Are Composite Keys

While I’m attacking the sacred values of DBAs everywhere, composite keys (keys made up of more than
one column) are also abad idea. Composite keysincrease the overhead in your database asforeign keys,
increase the complexity of your database design, and often incur additional processing requirements when
many fieldsareinvolved. My experiencesisthat an object id (OID), a single column attribute that has no
business meaning and which uniquely identifies the object, isthe best kind of key. Ideally OlIDs are unique
within the scope of your enterprise-wide database(s), in other words any given row in any given table hasa
unigque key value. OlDs are simple and efficient, their only downside isthat experienced relational DBAS
often have problems accepting them at first (although fall in love with them over time).

8.10 You Need Several Inheritance Strategies

There are three fundamental solutions (Ambler, 1995b) for implementing inheritance in arelational database:
use one table for an entire class hierarchy; use one table per concrete class; or use one table per class.
Although all three approaches work well, none of them areideal for all situations. The end result isthat
your persistence layer will need to support al three approaches at some point, although implementing one
table per concrete class at first is the easiest way to start.

8.11 Stored Procedures Are a Bad ldea

Thisissue was discussed previously, but the main conclusion was that stored procedures are little better
than a quick hack used to solve your short-term problems.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 28

0. So What's With The Attitude Problem?

In this section | want to address why we keep hearing that mapping does not work. First, let’sgo for an
easy kill —employees of object databasecompanies. | shouldn’t have to point out that OODB people have
astake in shooting down relational databases. Don’t get mewrong, | realy like OODB, but | am arealist —
I"l listen to what OODB people have to say when they’ re talking about object databases, but when they’re
talking about relational databases| listen with agrain of salt.

The second problem are the articles that talk about C++ projects that ran aground when they used relational
technology. When you actually read these articlesin detail, especially from the eye of someone with
experience in more than C++, you quickly realize that most of their problemslie with C++ and itsinherent
difficulties, and not with mapping objectsto RDBs. Y ou really need to read between the lines with alot of
these articles.

Thethird problem liesin not understanding all of the realities mentioned earlier. Y ou need to encapsulate
your database. Y ou need to use Ol Ds effectively. You need to let your class diagram drive your database
design. You shouldn’t wrap alegacy database. If you ignore this advice you risk running into serious
trouble.

I challenge you to go back and re-read any anti mapping articlesyou haveread in the past. | challenge you
to question the advice of so-called object gurus who claim that mapping isn’t agood idea. When you think
for yourself | believe that you will see that mapping objects to relational databasesis avery viable approach
to object persistence.

10. Summary

Considering the investment in legacy datathat exists today, and the reluctance of organizationsto move
away from it, | suspect that organizationswill be mapping objectsto relational databases for yearsto come.
| also believe that relational databases will evolveintime. Evolution, not revolution, will be the name of the
game for the vast majority of organizations. Whether or not thiswill be the best strategy only time will tell.

In this paper | discussed the realities of mapping objectsto relational databases. Regardless of what the
object gurustell you relational databases are the norm, not the exception, for storing objects. Yes, the
object/relational impedance mismatch means that you need to rethink a couple of relational tenets, but that’s
not abig deal. Thematerial in this paper is based on my real-world experiences, it is not academic musings,
and | hope that I’ ve shattered afew of your misconceptions about thistopic. Y ou really can map objects
successfully.

Scott’s Recommended Reading's

| maintain a persistence reading list at http://www.ambysoft.com/booksPersistence.html that you should
find of value. There are also several other reading lists at http://www.ambysoft.com/books.html , including
ones about object-orientation, patterns, component-based development, and Java.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 29

11. References and Recommended Reading

Ambler, SW. 1995a. Complex Data Relationships: Bet on OODBMS. Software Magazine, January 1995,
p72-74.

Ambler, SW. 1995b. Mapping Objectsto Relational Databases. Software Development, October 1995, p63-
72.

Ambler, SW. 1996. Object-Relational Mapping. Software Development, October 1996, p47-50.
Ambler, SW. 1997a. Designing a Search Screen. Software Development, January 1997, p79-82.
Ambler, SW. 1997b. Handling Object-Oriented Errors. Software Development, February 1997, p71-73.
Ambler, SW. 1997c. Normalizing Classes. Software Development, April 1997, p69-72.

Ambler, SW. 1997d. Implementing PickLists of Objects. Software Development, June 1997, p73-76.

Ambler, SW. 1997e. The Realities of Mapping Objects To Relational Databases. Software Development,
October 1997, p71-74.

Ambler, SW. 1998a. Building Object Applications That Work: Your Step-By-Step Handbook for
Devel oping Robust Systems with Object Technology. SIGS Books/Cambridge University Press, 1998.

Ambler, SW. 1998b. Process Patterns. Building Large-Scale Systems Using Object Technology. New
Y ork: SIGS Books/Cambridge University Press 1998.

Ambler, SW. (1998c). The Design of a Robust Persistence Layer For Relational Databases: An AmbySoft
Inc. White Paper. http://www.ambysoft.com/persistencel ayer.html .

Ambler, SW. (2000). The Object Primer 2™ Edition: The Application Developer’s Guide to Object
Orientation. New Y ork: Cambridge University Press. http://www.ambysoft.com/theObjectPrimer.html .

Ambler, SW. & Constantine, L.L. (2000a). The Unified Process Inception Phase. Gilroy, CA: CMP Books.
http://www.ambysoft.com/inceptionPhase.html .

Ambler, SW. & Constantine, L.L. (2000b). The Unified Process Elaboration Phase. Gilroy, CA: CMP
Books. http://www.ambysoft.com/elaborationPhase.html .

Ambler, SW. & Constantine, L.L. (2000c). The Unified Process Construction Phase. Gilroy, CA: CMP
Books. http://www.ambysoft.com/constructionPhase.html .

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). A Systems of Patterns. Pattern-
Oriented Software Architecture. New Y ork: John Wiley & SonsLtd.

Rationa (1997). The Unified Modeling Language for Object-Oriented Devel opment Documentation v1.1.
Rational Software Corporation, Monterey California.

Vermeulen, A., Ambler, SW., Bumgardner, G., Metz, E., Misfeldt, T., Shur, J., & Thompson, P. (2000). The
Elements of Java Style. New Y ork: Cambridge University Press.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 30

Important Note: The Software Devel opment articles cannot be obtained online from Software Devel opment
nor from me. If you want to obtain copies you will have to get them from your local library or from afriend.
Sorry.

12. About the Author

Scott W. Ambler is President of Denver-based Ronin International. Scott is the author of The Object Primer
2" Edition (1995, 2000), Building Object Applications That Work (1998), Process Patterns (1998) and More
Process Patterns(1999), and co-author of The Elements of Java Style (2000) all published by Cambridge
University Press. Heisalso co-editor with Larry Constantine of the Unified Process book series from CMP
books, including The Unified Process Inception Phase (Fal 2000), The Unified Process Elaboration Phase
(Spring 2000), and The Unified Process Construction Phase (Summer 2000) all of which focus on best
practices to enhance the Unified Process. He has worked with OO technology since 1990 in various roles:
Process Mentor, Business Architect, System Analyst, System Designer, Project Manager, Smalltalk
Programmer, Java Programmer, and C++ Programmer. He has a so been active in education and training as
both aformal trainer and as an object mentor. Scott is a contributing editor with Softwar e Devel opment
(www.sdmagazine.corr) and writes columns for Computing Canada (www.plesman.com). He can be
reached viae-mail at scott.ambler@ronin-intl.com

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 31

13. Glossary of Terms
This section describes the key terms that | have used throughout this document.

Aqggregation -- Represents “is-part-of” relationships.

Anti-pattern — The description of acommon approach to solving acommon problem, an approach that in
time proves to be wrong or highly ineffective.

Application server — A server on which businesslogic isdeployed. Application servers are key to an n-tier
client/server architecture.

Association -- Relationships, associations, exist between objects. For example, customers BUY products.

Associativetable — A table in arelational database that is used to maintain arelationship between two or
more other tables. Associative tables aretypically used to resolve many-to-many relationships.

Client — A single-user PC or workstation that provides presentation services and appropriate computing,
connectivity, and interfaces relevant to the business need. A client isalso commonly referred to asa*“front-
end.”

Client/server (C/S) architecture—A computing environment that satisfies the business need by
appropriately allocating the application processing between the client and the server processes.

Concurrency — Theissues involved with allowing multiple people simultaneous access to your persistence
mechanism.

Coupling — A measure of how connected two items are.

CRUD — Acronym for create, retrieve, update, delete. The basic functionality that a persistence mechanism
must support.

Data dictionary — A repository of information about the layout of a database, the layout of aflat file, the
layout of aclass, and any mappings among the three.

Database proxies — An object that represents a business object stored in adatabase. To every other object
in the system the database proxy appears to be the object that it represents. When other objects send the
proxy amessage it immediately fetches the object from the database and replaces itself with the fetched
object, passing the message onto it. See the Proxy pattern in chapter 4 for more details.

Database server — A server which has a database installed on it.

Digtributed objects — An object-oriented architecture in which objects running in separate memory spaces
(i.e. different computers) interact with one another transparently.

Domain/business classes — Domain/business classes model the business domain. Business classes are
usually found during analysis, examples of which include the classes Customer and Account.

Fat-client — A two-tiered C/S architecture in which client machines implement both the user interface and

the businesslogic of an application. Serverstypically only supply datato client machines with little or no
processing donetoit.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 32

Key —One or more columnsin arelational datatable that when combined form a unique identifier for each
record in the table.

Lock —An indication that atable, record, class, object, ... isreserved so that work can be accomplished on
theitem being locked. A lock is established, the work is done, and the lock is removed.

n-Tier client/server — A client/server architecture in which client machines interact with application servers,
which in turn interact with other application servers and/or database servers.

Object adapter — A mechanism that both converts objects to records that can be written to a persistence
mechanism and converts records back into objects again. Object adapters can also be used to convert
between objects and flat-file records.

Object identifiers (OIDs) — A uniqueidentifier assigned to objects, typically alarge integer number. OIDs
are the object-oriented equivalent of keysin the relational world.

ODMG — Object Database Management Group, a consortium of most of the ODBM S vendors who together
set standards for object databases.

OOCRUD - Object-oriented CRUD.

Optimistic locking — An approach to concurrency in which anitem islocked only for thetimethat itis
accessed in the persistence mechanism. For example, if a customer object isedited alock isplaced onitin
the persistence mechanism for the time that it takesto read it in memory and then it isimmediately removed.
The object is edited and then when it needsto be saved it islocked again, written out, then unlocked. This
approach allows many people to work with an object simultaneously, but also presents the opportunity for
peopleto overwrite the work of others.

OQL —Object Query Languages, a standard proposed by the ODMG for the selection of objects. Thisis
basically SQL with object-oriented extensions that provide the ability to work with classes and objects
instead of tables and records.

Pattern — The description of ageneral solution to acommon problem or issue from which a detailed solution
to a specific problem may be determined. Software development patterns come in many flavors, including
but not limited to analysis patterns, design patterns, and process patterns.

Persistence — The issue of how to store objects to permanent storage. Objects need to be persistent if they
areto be available to you and/or to others the next time your application is run.

Per sistence classes — Persistence classes provide the ability to permanently store objects. By
encapsulating the storage and retrieval of objects via persistence classes you are able to use various
storage technol ogies interchangeably without affecting your applications.

Persistencelayer — The collection of classes that provide business objects the ability to be persistent. The
persistence layer effectively wraps your persistence mechanism.

Per sistence mechanism— The permanent storage facility used to make objects persistent. Examplesinclude
relational databases, object databases, flat files, and object/relational databases.

Pessimistic locking — An approach to concurrency in which an item islocked for the entiretimethat itisin
memory. For example, when a customer object is edited alock is placed on the object in the persistence
mechanism, the object is brought into memory and edited, and then eventually the object is written back to
the persistence mechanism and the object is unlocked. This approach guaranteesthat anitemwon’t be

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 33

updated in the persistence mechanism whereas the item isin memory, but at the sametimeisdisalows
othersto work with it while someone el se does.

Process anti-pattern — An anti-pattern which describes an approach and/or series of actions for developing
software that is proven to be ineffective and often detrimental to your organization.

Process pattern — A pattern which describes a proven, successful approach and/or series of actions for
developing software.

Read lock — A type of lock indicating that atable, record, class, object,... is currently being read by someone
else. Other people may also obtain read locks on the item, but no one may obtain awrite lock until all read
locks are cleared.

Reading into memory — When you obtain an object from the persistence mechanism but don’t intend to
updateit.

Retrieving into memory — When you obtain an object from the persi stence mechanism and will potentially
updateit.

Server — A server isone or more multiuser processors with shared memory that provides computing
connectivity, database services, and interfaces relevant to the business need. A server isaso commonly
referred to as a*“back-end.”

SQL — Structured Query Language, a standard mechanism used to CRUD recordsin arelational database.
SQL statement — A piece of SQL code.

System layer — The collection of classes that provide operating-system-specific functionality for your
applications, or that wrap functionality provided by non-OO applications, hardware devices, and/or non-OO

codelibraries.

Thin client — A two-tiered client/server architecture in which client machines implement only the user
interface of an application.

Transaction — A transaction is asingle unit of work performed in a persistence mechanism. A transaction
may be one or more updates to a persistence mechanism, one or more reads, one or more del etes, or any
combination thereof.

User -interface classes — User-interface classes provide the ability for usersto interact with the system.
User interface classes typically define a graphical user interface for an application, although other interface
styles, such as voice command or handwritten input, are also implemented via user-interface classes.

Wrapping —Wrapping is the act of encapsulating non-OO functionality within aclass making it look and
feel like any other object within the system.

Writelock — A type of lock indicating that atable, record, class, object,... is currently being written to by
someone else. No one may obtain either aread or awrite lock until thislock is cleared.

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 4

14. Index

A

Ad-NOC rEPOIING....c.cveeereeerrerrereerereereeereeseeersseenns 8
Aggregation

AEfINITION ..o

VS. association
ANAlYSIS PAILEINS.....coeecrreeerreerereereee e
ANL-PEELEIN......viveree s
Application server....
ATCHITECIUNE ...
ASSEITIONS......oiiiereeerree s
Association

VS, 80QregalioN......coveerrreerreeerreeerreeeeressesessenenns 12
Associative table

AEfINITION ..o
Attribute

L 0T=To] o] oo O 7
Author

(o0] 1 2= £ Vo OOV 30

B

Book
Building Object Applications That Work 7
Elements of Java Style.......cccoovvnenncnencenecnne
More Process Patterns
Process Patterns...........covvvvvvvnnensnesenesenenes
The Object Primer.
BUSINESS MEANINGcocvreneeencerieeereeeisieeeieeeieeaas

Client/server (C/S) architecture
COMPOSITE KEYS ... esesesseessesenas
CONCUITENCY ... esseans
definition
(0o 11 o] 11 o [T
CRUD
AEfINITION ..o 31

D

Datadictionary

AEfINITION ..o 31
Datamodel........ccoovvveeeirre s 26
Datamodelers

CarEEr aVICE....ucvevevererereteere ettt nenas
Database administrators
Database proxy

AEfINITION .. 31
Database SEIVETcccveveiieececeese s 31
Databases.......coccueieeieiieiseee e 7
DeSigN PaLternS.......ooceererereeeirerereisieeseseeeseseeee s 7
Detailed modeling

TEChNIQUES......eieerre e 19
Distributed design..........ccccoeevrenerinneneeerereneeeenene 7
Distributed ODJeCtS.......covereeerrerreeerereene 31
Domain/businesS Class..........cccoeeeeeeeeeeeerecieeeenns 31
E
Enterprise datamodelscocvvveineceneecnneeenns 23
Example SOUrce COdE..........coreienerrneeceneeenneeenens 25
Exception handling
Extreme Programming...........coueeeneeceneeesseeenens 20
F
= 02 1<t |
FLOOTccooveeue.

Foreign key

Full Lifecycle Object-Oriented Testing............... 20
G

GUIDS.....oceceecteeeeeeceee ettt aeas 3
|

Impedance mismatch..........cccooveerrereenreseenenn, i,24
INNEMTANCE......ceeeeeeeeee e 27

and relational databasesccveeveeveeeeenenen, 8
Instance rel ationship

AEFINIION v 31
Iterativeinthesmall ... 19
J

Key
definitionoceeeeeeceeeeeenee

foriegn keys
Keys

L

Legacy databases........ccovvvevvvevervesesesesisesesssnes 26
Lock

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 35

EfINITION .. 32

OptiMistic 10CKING.......ccoveeeerrerereeereeee e 32

pessimistic locking

FE80 [OCK ...t

W 1OCK ...
0o (1 o

o] 011 0 11K o 16

01555 1 1K 1 T 16
Logical datamodelers

CArEEr AOVICE.....cveeeeeireeereeesises e 23
Logical persistence model..........ccccvvevverereneennn. 18

M

Many-to-one relationship
iMplementation...........cccvveceveveneesereee s 14

Mapping
attributes

different relationships.........cccoeeevvevcevercceennnn,
dissimilar classesto one table
inheritance

Naming conventions
N-Tier ClIENt/SEIVEY ...

O

Object adapter

AEfiNITION ... 32
Object database management group

AEfiNITION ...

Object paradigm
Object query language
AEfiNITION ... 32

OID e See Object ID
One-to-manyccceeveveeeererinnenes See Many-to-one
One-to-onerelationship

IMplementation ... 14
OOCRUD

AEfiNITION ... 32

OOSP.....oieireeirtie st 20

OptimistiC [OCKING......cvrveereerrererreeinereseeereseseeerenenas 16
AEfiNItioN ... 32

P

L 1 R 32

Persistence

AEfiNItioN ...
Persistence class
Persistence layer........ccccouenee.

AEfiNItioN ...
Persistence mechanism...........cccoccevveveerereceennn, 32
Pessimistic locking

AEfiNItioN ...
Physical data modelers

CAreer adVICE....ceeeeerereeecte s 23
Physical persistence model..........cccccoeveevereeennne. 18
PolymorphiSm.........ccceeveeecnrencseseseees e 2
Process anti-patterncocvvevecenseseeseseeeennnns 3
Process patternccovvvvvvnsesvnesesssesesesenees 3

persistence modeling.........ccovveveererecenerenenns 18
R
Read lock

AeEfiNItioN ...
Reading list........ccccovveveerrenennes

Referential integrity
Relational database
and iNhEMtaNCe.........cceveveeeveeeee e
FULUTE OF ..
Relational databases
Relational paradigm................
Relationships......cccccoceeerenennas
REPIICALION.......ccvcteecceee e
Ronin Internationalccccevveeeevreeeseseeeesnenns

S

Task process pattern
persistence Modeling.........covereeenieernieerneeennens 18
THiN ClIENT.....cooe s 33

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

Copyright 1998-2000 Scott W. Ambler 36

Transaction UUIDS ..ottt ssnees
pleﬂ 0T (T o] 3 W
TrHQQErS. e
Type safety ATAY =] o 11 Lo R 3
U Write lock
AEfINITION ..cvvcccee e 3
Unified Modeling Language..........c.ccceceeuverenreennen. 20 X
Unified Process.
User interface class........covvvvvvevseesseeeesens 3 P et 20

Visit www.ronin-intl.comfor more White Paperson Object-Oriented Development

